ON THE EXISTENCE OF GENERALIZED COMPLEX SPACE FORMS

BY

ZBIGNIEW OLSZAK

Institute of Mathematics, Technical University of Wrodaw, Wybrze2e Wyspiatiskiego 27, 50-370 Wroelaw, Poland

ABSTRACT

The existence of generalized complex space forms with nonconstant function h is proved.

1. Introduction

The notations and terminology used in this paper are the same as that employed by Tricerri and Vanhecke in [6].

Let (M, J, g) be an almost Hermitian manifold. Denote by π_1 and π_2 the generalized curvature tensor fields defined by

$$
\pi_1(X, Y)Z = g(X, Z)Y - g(Y, Z)X,
$$

\n
$$
\pi_2(X, Y)Z = g(JX, Z)JY - g(JY, Z)JX + 2g(JX, Y)JZ,
$$

where X, Y, $Z \in \mathcal{X}(M)$. (M, J, g) is said to be a generalized complex space form if its Riemannian curvature tensor R satisfies the condition

$$
(1.1) \t\t R = f\pi_1 + h\pi_2,
$$

where f and h are certain smooth functions on M .

Let (M, J, g) be a generalized complex space form for which the function h is not identical zero. Tricerri and Vanhecke [6] have proved the following: If $\dim M \geq 6$, then (M, J, g) is a complex space form, i.e. a Kählerian manifold with constant holomorphic sectional curvature (consequently, $f = h = \text{const}$).

Received October 27, 1988

The same conclusion holds if dim $M = 4$ and if, additionally, $f =$ const or $h =$ const. In the case of dim $M = 4$ it is also proved that $f + h =$ const and (M, J, g) is Hermitian on the open subset of M on which $h \neq 0$.

In this context they stated the following problem [6, p. 389]: Do there exist 4 dimensional almost Hermitian manifolds with $R = f\pi_1 + h\pi_2$, where h is a nonconstant smooth function?

In the present paper it is shown that the above question has the positive answer. Exactly, in Theorem 1 we prove that certain conformal deformations of 4-dimensional Bochner flat Kahlerian manifolds with nonconstant scalar curvature lead to generalized complex space forms with nonconstant function h. Theorem 2 says that any generalized complex space form with nonzero at each point and nonconstant function h can be obtained only in that way.

The author thanks Prof. L. Vanhecke for interesting and useful comments, and Dr. O. Kassabov for certain suggestions.

2. Auxiliary formulas

Before we start with our main results recall basic formulas for conformal deformations of almost Hermitian structures which we need in what follows.

Assume that (M, J, g) is an almost Hermitian manifold with dim $M = 4$. Let σ be a smooth function on M and \tilde{g} the Riemannian metric conformally related to g by $\tilde{g} = e^{-\sigma}g$. Let $\omega = d\sigma$ and B be the contravariant field of ω given by $g(X, B) = \omega(X)$. It is classical that the Levi-Civita connections generated by \hat{g} and g are connected by

$$
(2.1) \qquad \tilde{\nabla}_X Y = \nabla_X Y - \frac{1}{2} \{ \omega(X) Y + \omega(Y) X - g(X, Y) B \}.
$$

Define a symmetric $(0,2)$ -tensor field P on M by

$$
(2.2) \hspace{1cm} P(X, Y) = (\nabla_X \omega)Y + \frac{1}{2}\omega(X)\omega(Y) - \frac{1}{4}\omega(B)g(X, Y),
$$

which in view of (2.1) can also be given by

$$
(2.3) \tP(X, Y) = (\tilde{\nabla}_X \omega)Y - \frac{1}{2}\omega(X)\omega(Y) + \frac{1}{4}\omega(\tilde{B})\tilde{g}(X, Y),
$$

where \tilde{B} is the contravariant field of ω defined by the relation $\tilde{g}(X, \tilde{B}) = \omega(X)$.

Let trace P be the trace of P computed in relation to the metric g (i.e., trace $P = \sum P(E_i, E_i)$, where $\{E_i, 1 \leq i \leq 4\}$ is a frame which is orthonormal with respect to g). From (2.2) we find

(2.4)
$$
\operatorname{trace} P = -\delta \omega - \frac{1}{2} \omega(B),
$$

 $\delta\omega$ being the codifferential of ω . It is also classical that the Ricci tensors $\tilde{\rho}$ and ρ are connected by

(2.5)
$$
\tilde{\rho}(X, Y) = \rho(X, Y) + P(X, Y) + \frac{1}{2}(\text{trace } P)g(X, Y),
$$

and the Ricci *-tensors $\tilde{\rho}^*$ and ρ^* by

(2.6)
$$
\tilde{\rho}^*(X, Y) = \rho^*(X, Y) + \frac{1}{2} \{ P(X, Y) + P(JX, JY) \}.
$$

Consequently, for the scalar curvatures $\tilde{\tau}$ and τ one has

$$
(2.7) \t\t\t e^{-\sigma}\tilde{\tau} = \tau + 3 \text{ trace } P,
$$

and for the *-scalar curvatures $\tilde{\tau}^*$ and τ^*

$$
(2.8) \t\t\t e^{-\sigma_{\tilde{\tau}}*} = \tau^* + \text{trace } P.
$$

3. Main results

THEOREM 1. Let (M, J, \hat{g}) be a Bochner flat Kählerian manifold of dimen*sion* 4. Assume, additionally, that the scalar curvature $\tilde{\tau}$ of \tilde{g} is nonzero *everywhere on M and nonconstant* (cf. Remark below). Let $g = e^{\sigma} \hat{g}$, where $\sigma = -\log(C\tilde{\tau}^2), C = \text{const} > 0.$ Then the Hermitian manifold (M, J, g) is a *generalized complex space form for which the function* $h \neq 0$ *everywhere on M and h* \neq *const.*

PROOF. Let \hat{Q} be the Ricci operator defined by $\hat{g}(\hat{Q}X, Y) = \hat{\rho}(X, Y)$, $\hat{\rho}$ being the Ricci tensor of \hat{g} . By identity (4) proved by the present author in [4], we have for \tilde{Q}

(3.1)
\n
$$
24 \hat{g}(\tilde{Q}^2 X, Y) - 4 \tilde{\tau} \tilde{g}(\tilde{Q} X, Y) - (6 \text{ trace } \tilde{Q}^2 - \tilde{\tau}^2) \tilde{g}(X, Y)
$$
\n
$$
= 4\{-4\tilde{\nabla}_{XY}^2 \tilde{\tau} + (\tilde{\Delta} \tilde{\tau}) \tilde{g}(X, Y)\},
$$

where trace means the trace of a $(0,2)$ -tensor computed in relation to the metric \tilde{g} , $\tilde{\nabla}^2$ is the second covariant derivative defined by $\tilde{\nabla}_{XY}^2 = \tilde{\nabla}_X \tilde{\nabla}_Y - \tilde{\nabla}_{\tilde{\nabla}_Y Y}$ and $\tilde{\Delta} \tilde{\tau} = \tilde{\tau} \tilde{\tau}$ trace($\tilde{\nabla}^2 \tilde{\tau}$) is the Laplacian of $\tilde{\tau}$. Note that since \tilde{Q} commutes with *J*, it follows from (3.1) that

$$
\tilde{\nabla}^2_{JXY}\tilde{\tau}=\tilde{\nabla}^2_{XY}\tilde{\tau}.
$$

As \tilde{Q} has two double eigenvalues at each point of M it satisfies the identity (cf. Derdzifiski [3], Lemma 4(i))

$$
\tilde{g}(\tilde{Q}^2X, Y) = \frac{\tilde{\tau}}{2}\tilde{g}(\tilde{Q}X, Y) - \frac{1}{8}(\tilde{\tau}^2 - 2 \text{ trace } \tilde{Q}^2)\tilde{g}(X, Y).
$$

This and (3.1) lead to

(3.3)
$$
\tilde{\rho}(X, Y) = \frac{1}{4} \left(\tilde{\tau} + 2 \frac{\tilde{\Delta} \tilde{\tau}}{\tilde{\tau}} \right) \tilde{g}(X, Y) - \frac{2}{\tilde{\tau}} \tilde{\nabla}_{XY}^2 \tilde{\tau}.
$$

It is a straightforward verification that the tensor field P given by (2.3) can be written here in the form

(3.4)
$$
P(X, Y) = -\frac{2}{\tilde{\tau}} \tilde{\nabla}_{XY}^2 \tilde{\tau} + \frac{1}{4} \omega(\tilde{B}) \tilde{g}(X, Y).
$$

Applying (3.3) and (3.4) into (2.5) we find $\rho = \lambda g$, i.e. (M, J, g) is Einsteinian. One can notice that, in view of (3.3) , this fact can also be deduced from Proposition 4 of Derdziński [3].

On the other hand, applying (3.2)–(3.4) and the equality $\tilde{p}^* = \tilde{p}$ in (2.6), we get $\rho^* = \mu g$, i.e. (M, J, g) is $*$ -Einsteinian. Furthermore, (M, J, g) is Bochner flat, since the Bochner curvature tensor is an invariant of a conformal transformation.

Now, by Theorem 12.5 of Tricerri and Vanhecke [6], (M, J, g) is a generalized complex space form. Thus we have the relation (1.I), which implies $h = \frac{1}{48}(3\tau^* - \tau)$. Hence, with the help of (2.7), (2.8) and $\tilde{\tau}^* = \tilde{\tau}$ we get $h =$ $(C/24)\tilde{\tau}^3$. Q.e.d.

THEOREM 2. *Let (M, J, g) be a generalized complex space form of dimension* 4 for which the function $h \neq 0$ at each point of M and $h \neq$ const. Let $\hat{g} = e^{-\sigma}g$, where $\sigma = -\frac{1}{3}$ log(C_1h^2), C_1 = const > 0. *Then* (*M*, *J*, \hat{g}) is a Bochner *flat Kählerian manifold and* $\sigma = -\log(C\tilde{\tau}^2)$, $C = \text{const} > 0$.

PROOF. As we already know, (M, J, g) is Hermitian. In [6] (eq. (12.8)) it is also shown that

$$
(3.5) \t3h(\nabla_X J)Y = (JY)(f)X - Y(f)JX,
$$

if X , Y are two unit vectors which define orthogonal holomorphic planes $\{X, JX\}$, $\{Y, JY\}$. Since (M, J, g) is Hermitian, it needs to satisfy (cf. Tricerri and Vaisman [5], eq. (2.2))

$$
(3.6) \qquad 2(\nabla_X J)Y = g(X, Y)JB - g(X, JY)B - \omega(Y)JX + \omega(JY)X
$$

for any *X*, $Y \in \mathcal{X}(M)$, where $\omega = \delta\Omega \circ J$ is the Lee form and *B* is, as usual, the

contravariant field of ω , Ω being the fundamental form defined by $\Omega(X, Y) =$ $g(X, JY)$. Comparing (3.5) and (3.6) we see that $3h\omega(X) = 2X(f)$ for any $X \in \mathcal{X}(M)$. Hence and from $f + h = \text{const}$ we have $3h\omega(X) = -2X(h)$. Consequently, $\omega = -\frac{1}{3}d \log(h^2) = d\sigma$. Thus, (M, J, \tilde{g}) is Kählerian and (M, J, g) is globally conformal to (M, J, \hat{g}) (in the sense of Vaisman [7]). Clearly, (M, J, \hat{g}) is Bochner flat.

To finish the proof, by (2.4) and (2.7), we get

(3.7)
$$
(C_1h^2)^{1/3}\tilde{\tau} = \tau - 3(\delta\omega + \frac{1}{2}\omega(B)).
$$

On the other hand, for (M, J, g) we have (cf. Vaisman [8], Th. 3.1)

$$
(3.8) \t\t \tau - \tau^* = 2\delta\omega + \omega(B).
$$

Since (1.1) leads immediately to $\tau = 12(f+h)$ and $\tau^* = 4(f+5h)$, from (3.7) and (3.8) we obtain $C_1 \tilde{\tau}^3 = 24^3 h$. Therefore $\sigma = -\log(C\tilde{\tau}^2)$. Q.e.d.

REMARK. Examples of self-dual (consequently, Bochner flat) Kählerian **manifolds of dimension 4 and with nonconstant scalar curvature were constructed by Derdzifiski in [2]. lit must be also added that both our theorems are** strictly related to results of Derdziński [1]-[3].

REFERENCES

1. A. Derdzifiski, *Hermitian Einstein metrics,* in *Global Riemannian Geometry* (Durham, 1983), **Ellis** Horwood Series: Math. Appl., Horwood, Chichester, 1984, pp. 105-114.

2. A. Derdziński, *Examples de métriques de Kähler et d'Einstein auto-duales sur le plan* complexe, in Géométrie riemannienne en dimension 4 (Séminaire Arthur Besse, 1978/79), Cedic/Fernand Nathan, Paris, 1981, pp. 334-346.

3. A. Derdzifiski, *Self-dual Kahler manifolds and Einstein manifolds of dimension four,* Compositio Math. 49 (1983), 405-433.

4. Z. Olszak, *Bochner flat Kählerian manifolds*, in *Differential Geometry*, Banach Center Publications Vol. 12, PWN, Warsaw, 1984, 219-223.

5. F. Tricerri and I. Vaisman, *On some 2-dimensional Hermitian manifolds,* Math. Z. 192 (1986), 205-216.

6. F. Tricerri and L. Vanhecke, *Curvature tensors on almost Hermitian manifolds,* Trans. Am. Math. Soc. 267 (1981), 365-398.

7. I. Vaisman, *On locally conformal almost Kähler manifolds*, Isr. J. Math. 24 (1976), 338-351.

8. I. Vaisman, *Some curvature properties of complex surfaces,* Ann. Mat. Pura Appl. 132 $(1982), 1-18.$