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ABSTRACT 

The existence of generalized complex space forms with nonconstant function 
h is proved. 

1. Introduction 

The notations and terminology used in this paper are the same as that 

employed by Tricerri and Vanhecke in [6]. 

Let (M, J ,  g) be an almost Hermitian manifold. Denote by 7~ 1 and 7~ 2 the 
generalized curvature tensor fields defined by 

nt(X, Y)Z = g(X, Z ) Y  - g(Y,  Z)X,  

g2(X, Y)Z = g( JX, Z } J Y -  g( JY,  Z ) J X  + 2g( JX, Y )JZ ,  

where X, Y, Z E :Y(M). (M, J ,  g) is said to be a generalized complex space 

form if its Riemannian curvature tensor R satisfies the condition 

(1.1) R = frti + hrc2, 

where f a n d  h are certain smooth functions on M. 

Let (M, J ,  g) be a generalized complex space form for which the function h 

is not identical zero. Tricerri and Vanhecke [6] have proved the following: If 

dim M >_- 6, then (M, J ,  g) is a complex space form, i.e. a K~ihlerian manifold 

with constant holomorphic sectional curvature (consequently, f = h = const). 
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The same conclusion holds if dim M = 4 and if, additionally, f =  const or 

h = const. In the case of dim M = 4 it is also proved that f + h = const and 

(M, J, g) is Hermitian on the open subset of M on which h ~ 0. 

In this context they stated the following problem [6, p. 389]: Do there exist 4- 

dimensional almost Hermitian manifolds with R = fnl + hit2, where h is a 

nonconstant smooth function? 

In the present paper it is shown that the above question has the positive 

answer. Exactly, in Theorem 1 we prove that certain conformal deformations 

of  4-dimensional Bochner flat Kahlerian manifolds with nonconstant scalar 

curvature lead to generalized complex space forms with nonconstant function 

h. Theorem 2 says that any generalized complex space form with nonzero at 

each point and nonconstant function h can be obtained only in that way. 

The author thanks Prof. L. Vanhecke for interesting and useful comments, 

and Dr. O. Kassabov for certain suggestions. 

2. Auxiliary formulas 

Before we start with our main results recall basic formulas for conformal 

deformations of almost Hermitian structures which we need in what follows. 

Assume that (M, J, g) is an almost Hermitian manifold with dim M = 4. 

Let tr be a smooth function on M and g the Riemannian metric conformally 

related to g by g = e-*g. Let to = dtr and B be the contravariant field of 09 

given by g(X, B)--to(X).  It is classical that the Levi-Civita connections 

generated by g and g are connected by 

(2.1) Vx Y = Vx Y - ½{to(X)Y + og(Y)X - g(X,  Y)B }. 

Define a symmetric (0,2)-tensor field P on M by 

(2.2) P(X, Y) = (Vxto)r  + ½to(X)to(r) -- ¼to(B)g(X, r), 

which in view of (2.1) can also be given by 

(2.3) P(X, Y) = (~Txto)Y - ½to(X)to(Y) + ¼to(B)g(X, Y), 

where/} is the contravariant field of  to defined by the relation g(X,  JB) = to(X). 

Let trace P be the trace of P computed in relation to the metric g (i.e., 

trace P = Y~ P(Ei, Ei), where (E~, 1 =< i =< 4} is a frame which is orthonormal 
with respect to g). From (2.2) we find 

(2.4) trace P = - 6to - ½to(B), 
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8~ being the codifferential ofa~. It is also classical that the Ricci tensors/5 andp 

are connected by 

(2.5) p(X, Y) :- p(X, Y) + P(X, Y) + ½(trace P)g(X, Y), 

and the Ricci .-tensors p* and p* by 

(2.6) /~*(X, Y) = p*(X, Y) + ½{P(X, Y) + P(JX, JY)). 

Consequently, for the scalar curvatures N and z one has 

(2.7) e-  °N = z + 3 trace P, 

and for the *-scalar curvatures N* and z* 

(2.8) e-°N * = z* + trace P. 

3. Main results 

THEOREM 1. Let (M, J, ~, ) be a Bochner flat K~hlerian manifold of dimen- 
sion 4. Assume, additionally, that the scalar curvature N of ~ is nonzero 
everywhere on M and nonconstant (cf. Remark below). Let g = e~ ,  where 
~7 = - log(CC), C = const :> 0. Then the Hermitian manifold (M, J, g) is a 
generalized complex space form for which the function h ~ 0 everywhere on M 
and h v ~ const. 

PROOF. Let Q be the Ricci operator defined by ~(QX, Y)=/~(X, Y),/) 
being the Ricci tensor of~.  By identity (4) proved by the present author in [4], 

we have for (~ 

24 g(QZX, Y) - 4Nt~(QX, Y) - (6 tr~ce 52 - N2)g(X, Y) 

(3.1) 
= 4( -- 4V~rN + (z~N)g(X, Y)}, 

where tr '~e means the trace of a (0,2)-tensor computed in relation to the metric 

g, ~z is the second covariant derivative defined by ~2y = VxVr - V,~Y and 

zX~ = tr'~ce(V2~) is the Laplacian of ~. Note that since Q commutes with J, it 

follows from (3.1) that 

(3.2) ~2x, r?  = ~2 ~. 

As () has two double eigenvalues at each point of  M it satisfies the identity 

(cf. Derdzifiski [3], Lemma 4(i)) 
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g(Q2X, Y) = ~ ~(QX, Y) - ~(C - 2 trace O2)g(x,  Y). 

This and (3.1) lead to 

(3.3) ~(X, Y) = -~ + 2 g(X,  Y) - - V2xr?. 
z 

It is a straightforward verification that the tensor field P given by (2.3) can be 

written here in the form 

2 
(3.4) P(X,  Y) = - - ~72y~ "-~ l o ) ( J ~ ) g ( X ,  Y). 

Applying (3.3) and (3.4) into (2.5) we find p =2g ,  i.e. ( M , J , g )  is 
Einsteinian. One can notice that, in view of(3.3), this fact can also be deduced 

from Proposition 4 of Derdzifiski [3]. 

On the other hand, applying (3.2)-(3.4) and the equality/)* =/)  in (2.6), we 

get p* =/tg,  i.e. (M, J,  g) is .-Einsteinian. Furthermore, (M, J ,  g) is Bochner 

flat, since the Bochner curvature tensor is an invariant of  a conformal 

transformation. 

Now, by Theorem 12.5 of Tricerri and Vanhecke [6], (M, J,  g) is a genera- 

lized complex space form. Thus we have the relation (1.I), which implies 
h = ~(3z* - r). Hence, with the help of (2.7), (2.8) and ~* = ~ we get h = 
(C/24)~ 3. Q.e.d. 

THEOREM 2. Let (M, J, g) be a generalized complex space form o f  dimen- 

sion 4 for which the function h v~ 0 at each point o f  M and h ~ const. Let 

fl, = e-°g,  where rr = - ~log(Clh2), Ct = const > 0. Then (M, J, g) is a Bochner 

fiat Kf~hlerian manifold and t7 = - log(C~2), C = const > 0. 

PROOF. As we already know, (M, J,  g) is Hermitian. In [6] (eq. (12.8)) it is 

also shown that 

(3.5) 3 h ( V x J ) Y  = ( J Y ) ( f ) X  - Y ( f ) J X ,  

if X, Y are two unit vectors which define orthogonal holomorphic planes 

{X, JX) ,  ( Y, JY) .  Since (M, J,  g) is Hermitian, it needs to satisfy (cf. Tricerri 

and Vaisman [5], eq. (2.2)) 

(3.6) 2 (VxJ )Y  = g(X,  Y)JB - g(X,  JY)B  - t n (Y )JX  + o~(JY)X 

for any X, Y E ~ ( M ) ,  where co = 5fl  o J i s  the Lee form and B is, as usual, the 
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contravariant field of  o9, ~ being the fundamental form defined by Xq(X, Y) = 
g(X,  JY). Comparing (3.5) and (3.6) we see that 3hog(X)= 2 X ( f )  for any 
XE~g(M) .  Hence and from f +  h =const  we have 3 h m ( X ) = -  2X(h). 
Consequently, o 9 = - ~ d l o g ( h 2 ) = d a .  Thus, ( M , J , g )  is K~ihlerian and 
(M, J, g) is globally conformal to (M, J, g) (in the sense of Vaisman [7]). 
Clearly, (M, J, g) is Bochner tlat. 

To finish the proof, by (2.4) and (2.7), we get 

(3.7) ( C 1 h 2 ) 1 / 3 ~  = z - 3(0o9 + ½w(B)). 

On the other hand, for (M, J, g) we have (cf. Vaisman [8], Th. 3.1) 

(3.8) z -- r* = 20to + co(B). 

Since (1.1) leads immediately Lo r = 1 2 ( f +  h) and z* = 4 ( f +  5h), from (3.7) 
and (3.8) we obtain Clt 3 = 243h. Therefore tr = - log(C~Z). Q.e.d. 

REMARK. Examples of  self-dual (consequently, Bochner flat) K~ihlerian 
manifolds of  dimension 4 and with nonconstant scalar curvature were con- 
structed by Derdzifiski in [2]. lit must be also added that both our theorems are 
strictly related to results of  Derdzifiski [1 ]-[3]. 
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